当前位置:皇牌天下 > 科技中心 > 狡猾量子颠覆因果皇牌天下:

狡猾量子颠覆因果皇牌天下:

文章作者:科技中心 上传时间:2020-02-09

这两种定向都是可能的。但研究人员只对其中一颗粒子进行测量,就确定两个粒子究竟处于何种自旋状态。根据哥本哈根诠释,测量不仅让人们获知粒子的状态,还会使得粒子“固定”在所测得的状态。

为了推导不等式,贝尔引用了前人的一些著名经典理论。此外,他还假设爱因斯坦的局部性原理是正确的。如果未来的实验证明不等式是无效的,那么导致不等式的要么是量子理论的前提错误,要么是自然界的“非局部性”。

2009年,Chiribella与合作者提出了一个理论构想,用一个量子比特做开关,控制一个粒子所经历的事件之间的因果顺序。当控制开关比特处于0状态时,粒子就先经过A门再经过B门。当处于1状态时,粒子就先经过B门再经过A门。但如果该比特处在0和1的叠加态,那么另一个量子比特将会经历两种次序的因果叠加——也就是说,粒子穿越两道门时并没有明确的顺序。

在21世纪,物理学家已经将量子纠缠粒子的数量扩展到多光子系统。随着实验的深入,相信我们面前将会有一个新的物理世界,随之而来的物理新原理将会被发现,这将会超越已经走过一个世纪的相对论。

《中国科学报》 (2017-08-07 第3版 国际)

量子纠缠已经被发现40年了。目前,物理学家正在将其扩展到多光子系统,试图通过量子纠缠实现远距离通信,并开发量子计算机。

因果性就一直是量子力学中的一个关键问题。20世纪30年代中期,爱因斯坦质疑了由尼尔斯:玻尔和维尔纳:海森堡提出的量子力学的随机性。玻尔与海森堡提出的哥本哈根诠释认为,量子测量的结果是随机的,并且只可能决定于测量的瞬间。

在20世纪30年代以后的很长一段时间里,许多一流的物理学家试图验证EPR的相关性,但没有一个人成功。1960年,才华横溢的北爱尔兰物理学家贝尔(Bell)从欧洲粒子研究中心(CERN)休了一年的学术假,最终提出了一个大胆的不等式来测试EPR的相关谜题。

实验中,A与B之间能共享信息,但一旦A、B之间存在明确的因果关系,共享过程便会结束。也就是说,正是由于A、B之间没有确定的因果顺序,研究人员才能用量子系统做一些不可能的事。

爱因斯坦和他的两个年轻的同事,波多尔斯基和罗森,来到普林斯顿大学定居美国。他们在20世纪30年代又对玻尔进行了一次攻击,目标是“不确定原理”。挑战论文由三位作者名字的第一个英文字母缩写为EPR paradox。

“因果模型的框架提供了看待这些问题的新视角。”奥地利因斯布鲁克大学物理学家Katja Ried说。他曾经与滑铁卢大学的研究组合作,开发了一套能够制备因果不确定状态的实验系统。“如果量子理论是一个关于大自然如何处理、分配信息的理论,那么深究不同事件间的相互影响,或许可以揭示信息处理过程遵循的规律。”

爱因斯坦和他的合作者确信,这种现象预示着量子理论和相对论之间的冲突,量子理论是不完整的。这个重要的观点就是爱因斯坦学派的“可分离原理”,后来被称为“局部性原理”。当玻尔阅读爱因斯坦关于局部性原理的论文时,玻尔的反应非常平淡。他仍然持有哥本哈根学派“主体和客体是不可分割的”的旧观点,坚持粒子行为的概率解释,认为微观世界与宏观世界有着不同的“特殊规律”。EPR相关并不能解释量子理论的不完全性。

此外,由于因果是关于物体间如何通过时空产生相互作用的规律,这种新的视角或许能帮助人们解决当今物理学最大的挑战之一。Walther的合作者、维也纳量子光学与量子信息研究所理论物理学家Caslav Brukner说:“因果关系处于量子力学与广义相对论的交界处,因此有可能成为我们探索如何融合两大理论的切入点。”

然而,自从克劳塞尔在1978年和阿斯珀在1982年证明贝尔不等式不成立以来,相对论的基础——光速不变,或者说,光速是自然运动的极限这一“金科玉律”被否认。

实验中,光子先后通过A、B门,但光子的状态取决于两种不同的因果逻辑的混合:要么是A门的作用决定了B门的作用,要么是A、B两门的作用分别由其他事件决定——这就好比,高温天气会增加晒伤病例,也会增加冰激凌的销量,但晒伤与冰激凌之间并没有直接的因果关系。滑铁卢大学的实验结论与维也纳大学的结论一致:人们无法根据最终测得的光子状态判断先前事件之间的因果关系。

量子纠缠的非局部性对经典相对论有很大的影响。相对论的第一个经验假设,即光速不变原理,在量子纠缠的情况下失败了。在量子纠缠的世界里,粒子之间的相互作用可以超越时间和空间的瞬间,甚至不需要任何介质。然而,到目前为止,物理学家还不知道为什么量子系统和相对论中超越时空的“瞬时作用”与相对论之间存在着明显的冲突,只能在黑暗中推测。

狡猾量子颠覆因果 量子实验甚至修改“时间”概念

近年来,一些学者提出了“相空间理论”来解释量子纠缠。然而,由于该理论仍然是基于经典量子理论,并没有添加新的物理原理,这只是一种尝试,并没有得到物理学界的认可。

然而,对纠缠态粒子的测量证明粒子自旋之间的关联性,无法用粒子已有属性来解释,但同时这些关联又不违背狭义相对论,因为粒子的运动速度不可能超过光速。那这种关联是怎样产生的?这确实很难用直观的因果关系解释。

同样,有些人试图修改相对论使之与量子理论相容,但他们无法避免光速是恒定的这一基本假设。

如果能够结合量子理论与广义相对论,量子因果性或许能够发挥更大的作用。“在广义相对论中,因果结构起到了非常关键的作用。那么,因果性如何能够表现出其量子的一面呢?”Ried说。

想象一对粒子(如电子)处于所谓的单态,它们的自旋相互抵消,因此总自旋为零。假设粒子A和粒子B分离,测量粒子A沿一定方向的自旋,结果为“上”。由于粒子对的自旋为零,这意味着粒子B的自旋总是沿着相同的方向“向下”。

Brukner团队、Chiribella团队等许多物理学家已经开始初步尝试探索量子力学中模棱两可的因果关系。他们精心设计了相互关联的事件A与事件B,但没人能判断究竟是A先发生,导致了B,还是B先发生,导致了A。

在量子世界中,相对论的基本假设是完全无效的,这已经成为21世纪物理学中最具挑战性的问题之一。

“我们在试图理解量子力学的时候,常想保留部分经典物理的思想,比如粒子轨道。” Brukner说,然而历史告诉人们,这时候大家需要超越旧思维的全新观念,比如,用全新的方式理解因果律。“当你有了一个颠覆性的理论时,就必须要用更具颠覆性的思维理解它。”

在之前的索尔维会议上,爱因斯坦和波尔就量子理论的哲学基础进行了几次针锋相对的辩论。最后,当希特勒上台并迫害犹太人,爱因斯坦被迫离开德国时,爱因斯坦和波尔之间的争论结束了。

该团队证实,只要观察者不知道测量结果,那么测量就不会破坏因果叠加态。Walther说:“我们等到整个实验过程进行完毕,才提取测量结果。光子飞行途中,测量结果以及测量发生的时间都是未知的,但仍然对最终的结果产生影响。”

科学的进步总是在新的发现的基础上提出新的理论来代替旧的理论。EPR相关之谜起源于20世纪30年代,并在80年代得到了实验验证,从而导致了量子纠缠的新现象。这个奇特的现象挑战了一个多世纪以来的相对论基本假设(光速是自然运动的极限),为相对论的终结打开了希望之门。

2016年,Walther团队又设计了一种实验方法,允许研究者在光子经过两个逻辑门的过程中对其进行测量,而又不会立即改变观察者对它的认识。他们让光子自身携带测量结果,但不对其即时读取。由于光子在经过整个光路后才会被探测器探测到,观察者直到此时才能获知光子携带的测量结果,因此他们无法利用光子携带的信息推断光子经过逻辑门的顺序。

目前,物理学家正在将光子相互作用的数量扩展到16个光子系统。

3年后,Chiribella提出了实现这一想法的具体方案,于是Walther、Brukner和同事在实验室中付诸实践。该团队用了一系列波片和半反射镜,这些装置构成了可以操控光子偏振方向的逻辑门A和B。控制开关比特可以决定光子经过的顺序是AB还是BA,或者是AB与BA的叠加。一旦研究人员去测量光子先经过了哪个门,穿越门的顺序的叠加态也就被破坏了。

量子纠缠对当代物理学的影响

本文由皇牌天下发布于科技中心,转载请注明出处:狡猾量子颠覆因果皇牌天下:

关键词: 皇牌天下